If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-58=0
a = 1; b = 3; c = -58;
Δ = b2-4ac
Δ = 32-4·1·(-58)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{241}}{2*1}=\frac{-3-\sqrt{241}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{241}}{2*1}=\frac{-3+\sqrt{241}}{2} $
| 10c-5c=20 | | 3(u-15)=-3 | | -13k+19k=-6 | | Y2+3y-2=0 | | F(x)=-1x2+6x+315 | | F(x)=-1x+6x+315 | | 4(2x+2)=5(2x+1)-5 | | 3(x-4)=2x-(6+×) | | 102=2(m+3m) | | 3(x-2)=7x-3 | | √8-x=x-2 | | 2/3=b-14 | | X=50-25y | | x^2+3.5x-1.5=0 | | x4+2x3+-7x2+-8x+12=0 | | 12x+8+14x-4=360 | | 9^x+3^(2x+1)=36 | | 3-(2b-2)=2-7b | | 3-2(b-2)=2-7b3−2(b−2)=2−7b | | 3-2(b-2)=2-7b3−2(b−2)=2−7b3-2(b-2)=2-7b3−2(b−2)=2−7b3-2(b-2)=2-7b3−2(b−2)=2−7b3-2(b-2)=2-7b3−2(b−2)=2−7b3-2(b-2)=2-7b3−2(b−2)=2−7b3-2(b-2)=2-7b3−2(b−2)=2−7b3-2(b-2)=2-7b3−2(b−2)=2−7b | | 0.9-x/9=0.8x+1/2 | | 7y^2-32y-15=0 | | 3p^2-3p-6=0 | | 18-6x=21-3x | | j+5.5=20.5 | | 6-3x=18-6x | | 3/4+1/4=3/4m-1/4 | | 10x+54=x-90 | | 7x-30=x+42 | | h+10=-25 | | 7x-36+5x-1+x+9=180 | | 12x+17=8x-4 |